Suitable distribution for the response variable.`
different types of distributions
properies of distributions
a procedure to find a good initial distribution for the response
continuous
real line
;positive real line
;discrete
mixed part continuous part discrete
\(f(y;{\theta})\)
\(\int_{R_Y} f(y) \; dy=1\)
\(\sum_{y\in R_Y} f(y)=\sum_{y \in R_Y} P(Y=y)=1\)
\(\int_{R_{1}} f(y)\, dy + \sum_{y \in R_{2}} f(y) = 1\).
\(f(y;{\theta})\)
\({\theta}= (\theta_1, \theta_2, \ldots, \theta_k)\).
location
scale
shape
mean \[\begin{align*} E(Y)= \begin{cases} \int_{-\infty}^{\infty} y f(y)\, dy&\text{for continuous}\\ \sum_{y \epsilon R_Y} y\, P(Y=y) &\text{for discrete} \end{cases} \end{align*}\]
variance
coefficient of skewness
(adjusted) coefficient for kurtosis
the median
semi interquartile range
centile skewness
centile kurtosis
over 100 explicit distributions
implicit distributions
chooseDist()
to fit a “linear” models for both \(\mu\) and \(\sigma\)chooseDist()
The Books
www.gamlss.com