Introduction
step-wise selection
boosting
modelling interactions
Stepwise Selection (procedures)
forward ,
backwards ,
stepwise
Stepwise Selection (con.)
3-models
Stepwise Selection in GAMLSS strategy A.
1 (\(\mu\) )
\(L_{\mu}\)
\(\leftarrow\)
\(C_{\mu}\)
\(\rightarrow\)
\(U_{\mu}\)
\(F_{\mu}^{(1)}\)
\(C_{\sigma}, C_{\nu}, C_{\tau}\)
2 (\(\sigma\) )
\(L_{\sigma}\)
\(\leftarrow\)
\(C_{\sigma}\)
\(\rightarrow\)
\(U_{\sigma}\)
\(F_{\sigma}^{(2)}\)
\(F_{\mu}^{(1)}, C_{\nu}, C_{\tau}\)
3 (\(\nu\) )
\(L_{\nu}\)
\(\leftarrow\)
\(C_{\nu}\)
\(\rightarrow\)
\(U_{\nu}\)
\(F_{\nu}^{(3)}\)
\(F_{\mu}^{(1)},F_{\sigma}^{(2)}, C_{\tau}\)
4 (\(\tau\) )
\(L_{\tau}\)
\(\leftarrow\)
\(C_{\tau}\)
\(\rightarrow\)
\(U_{\tau}\)
\(F_{\tau}^{(4)}\)
\(F_{\mu}^{(1)}, F_{\sigma}^{(2)}, F_{\nu}^{(3)}\)
5 (\(\nu\) )
\(L_{\nu}\)
\(\leftarrow\)
\(F_{\nu}^{(3)}\)
\(\rightarrow\)
\(U_{\nu}\)
\(F_{\nu}^{(5)}\)
\(F_{\mu}^{(1)}, F_{\sigma}^{(2)}, F_{\tau}^{(4)}\)
6 (\(\sigma\) )
\(L_{\sigma}\)
\(\leftarrow\)
\(F_{\sigma}^{(2)}\)
\(\rightarrow\)
\(U_{\sigma}\)
\(F_{\sigma}^{(6)}\)
\(F_{\mu}^{(1)}, F_{\nu}^{(5)}, F_{\tau}^{(4)}\)
7 (\(\mu\) )
\(L_{\mu}\)
\(\leftarrow\)
\(F_{\mu}^{(1)}\)
\(\rightarrow\)
\(U_{\mu}\)
\(F_{\mu}^{(7)}\)
\(F_{\sigma}^{(6)}, F_{\nu}^{(5)}, F_{\tau}^{(4)}\)
Strategy A
library (gamlss2)
f1 <- rent~ (area+ yearc+ location+ bath+ kitchen+ cheating)|
area+ yearc+ location+ bath+ kitchen+ cheating|
area+ yearc+ location+ bath+ kitchen+ cheating|
area+ yearc+ location+ bath+ kitchen+ cheating
m1 <- gamlss2 (f1,
family= BCTo, data= da, trace= TRUE , n.cyc= 20 ,
c.crit= 0.01 )
mfA <- gamlss2 (m1, scope= list (lower= ~ 1 ,
upper = ~ poly (area,3 )+ poly (yearc,3 )+ (area+ yearc+ location+ bath
+ kitchen + cheating)^ 2 ),
trace= TRUE , parallel= "snow" , ncpus= 10 , k= log (3032 ),
direction= rep ("both" ,7 ) )
Linear model
\[
\begin{split}
\texttt{msLinear:} \qquad &\texttt{rent} \sim \text{BCTo}(\mu, \sigma, \nu, \tau ) \\
&\mu \sim \texttt{poly(area,3)}+ \texttt{poly(yearc,3)} \\
& \qquad +\texttt{location}+ \texttt{bath}+\texttt{cheating}+ \texttt{bath}\\
\log\,&\sigma \sim \texttt{yearc}+\texttt{kitchen}+\texttt{yearc*kitchen}+\\
& \qquad +\texttt{poly(yeatc,3)} \\
& \nu \sim \texttt{yearc} + \texttt{kitchen} \\
\log\,&\tau \sim \texttt{yearc} + \texttt{cheating}. \\
\end{split}
\]
Additive smooth model
\[
\begin{split}
\texttt{msAdditive:} \qquad &\texttt{rent} \sim \text{BCTo}(\mu, \sigma, \nu, \tau ) \\
&\mu \sim \texttt{pb(area)}+ \texttt{pb(yearc)} \\
& \qquad +\texttt{location}+ \texttt{bath}+\texttt{cheating}+ \texttt{bath}\\
\log\,&\sigma \sim \texttt{yearc}+\texttt{kitchen}+\texttt{yearc*kitchen}+\\
& \qquad +\texttt{pb(yeatc)} \\
& \nu \sim \texttt{yearc} + \texttt{kitchen} \\
\log\,&\tau \sim \texttt{yearc} + \texttt{cheating}. \\
\end{split}
\]
Boosting
library (gamboostLSS)
mfboost <- gamboostLSS (list (
mu = rent ~ bbs (area)+ bbs (yearc)+
(area+ yearc+ location+ kitchen+ bath+ cheating),
sigma = rent ~ bbs (area)+ bbs (yearc)+
(area+ yearc+ location+ kitchen+ bath+ cheating),
nu = rent ~ bbs (area)+ bbs (yearc)+
(area+ yearc+ location+ kitchen+ bath+ cheating),
tau = rent ~ bbs (area)+ bbs (yearc)+
(area+ yearc+ location+ kitchen+ bath+ cheating)),
data = da, families = as.families ("BCTo" ),
control= boost_control (mstop= 1000 , center= TRUE ),
method = "noncyclic" )
Boosting (continuous)
Starting cross-validation...
mstop (mfboost) <- mstop (cvr)
model
\[
\begin{split}
\texttt{mfboost:} \qquad &\texttt{rent} \sim \text{BCTo}(\mu, \sigma, \nu, \tau ) \\
&\mu \sim s(\texttt{area})+ s(\texttt{yearc}) +\texttt{location} \\
& \qquad +\texttt{bath}+\texttt{kitchen}+\texttt{cheating}\\
\log\,&\sigma \sim s(\texttt{area})+s(\texttt{yearc})+\texttt{location}\\
& \qquad +\texttt{bath}+ \texttt{cheating} \\
& \nu \sim s(\texttt{area})+ s(\texttt{yearc}) +\texttt{location} \\
& \qquad +\texttt{kitchen}+ \texttt{cheating} \\
\log\,&\tau \sim s(\texttt{yearc}). \\
\end{split}
\]
Neural Network
set.seed (213 )
msneural <- gamlss2 (rent~ n (~ area+ yearc+ location+ bath+ kitchen+
cheating, size= 10 )|
n (~ area+ yearc+ location+ bath+ kitchen+ cheating, size= 3 )|
n (~ area+ yearc+ location+ bath+ kitchen+ cheating, size= 3 )|
n (~ area+ yearc+ location+ bath+ kitchen+ cheating, size= 3 ),
family= BCTo, data= da)
GAMLSS-RS iteration 1: Global Deviance = 37885.661 eps = 0.295880
GAMLSS-RS iteration 2: Global Deviance = 37819.3966 eps = 0.001749
GAMLSS-RS iteration 3: Global Deviance = 37808.0326 eps = 0.000300
GAMLSS-RS iteration 4: Global Deviance = 37802.7383 eps = 0.000140
GAMLSS-RS iteration 5: Global Deviance = 37800.4138 eps = 0.000061
GAMLSS-RS iteration 6: Global Deviance = 37799.374 eps = 0.000027
GAMLSS-RS iteration 7: Global Deviance = 37799.2628 eps = 0.000002
Model
\[
\begin{split}
\texttt{msNeural:} \qquad &\texttt{rent} \sim \text{BCTo}(\mu, \sigma, \nu, \tau ) \\
& \boldsymbol{\mu} = NN_{\mu}(\textbf{X}) \\
\log\,&\boldsymbol{\sigma} \sim NN_{\sigma}(\textbf{X}) \\
& \nu \sim NN_{\nu}(\textbf{X}) \\
\log\,&\tau \sim NN_{\tau}(\textbf{X}) \\
\end{split}
\]