R | Fl | A | B | H | L | loc |
---|---|---|---|---|---|---|
693.3 | 50 | 1972 | 0 | 0 | 0 | 2 |
422.0 | 54 | 1972 | 0 | 0 | 0 | 2 |
736.6 | 70 | 1972 | 0 | 0 | 0 | 2 |
732.2 | 50 | 1972 | 0 | 0 | 0 | 2 |
1295.1 | 55 | 1893 | 0 | 0 | 0 | 2 |
1195.9 | 59 | 1893 | 0 | 0 | 0 | 2 |
R
softwareresiduals
in GAMLSS
an example; the rent99
data
R
packages
GAMLSS uses as residuals
the
normalised quantile residuals
\(\equiv\) z-scores
PIT
and z-scores
residualslet \(y_i\) and \(F(y_i, \hat(\theta)_i)\) be the ith observation and its fitted cdf respectively. Then the Probability Integral Transformed (PIT
) residuals are
\[u_i = F(y_i, \hat(\theta)_i) \] and the z-scores
residuals are
\[z_i = \Phi^{-1}(y_i, \hat(\theta)_i) \]
If the distribution of \(y_i\) is specified correctly then PIT
are uniform
;
i.e \[u_i \sim U(0,1)\]
and z-scores
are normally
distributed
i.e. \[z_i \sim NO(0,1)\]
residuals plots against other variables
index
x-variable
parameters
quantiles
qqplots
worm plots
density plots
bucket plots
skewness plots
rent
obs number | y | x1 | x2 | x3 | … | xr-1 | xr |
---|---|---|---|---|---|---|---|
1 | y1 | x11 | x12 | x13 | … | x1r-1 | x1r |
2 | y2 | x21 | x22 | x23 | … | x2r-1 | x2r |
3 | y3 | x31 | x32 | x33 | … | x3r-1 | x3r |
… | … | … | … | … | … | … | … |
n-1 | yn-1 | xn-11 | xn-12 | xn-12 | … | xn-1r-1 | xn-1r |
n | yn | xn1 | xn2 | xn3 | … | xnr-1 | xnr |
R | Fl | A | B | H | L | loc |
---|---|---|---|---|---|---|
693.3 | 50 | 1972 | 0 | 0 | 0 | 2 |
422.0 | 54 | 1972 | 0 | 0 | 0 | 2 |
736.6 | 70 | 1972 | 0 | 0 | 0 | 2 |
732.2 | 50 | 1972 | 0 | 0 | 0 | 2 |
1295.1 | 55 | 1893 | 0 | 0 | 0 | 2 |
1195.9 | 59 | 1893 | 0 | 0 | 0 | 2 |
gamlss
: the original (needs dist
and data
)
gamlss.dist
: defining the gamlss.family
distributions
gamlss.data
: for extra data sets
gamlss.add
: connect with mgcv
, nnet
and trees
gamlss.tr
: for truncating gamlss.family
distributions
gamlss.cens
: for censored response variables
gamlss.demo
: for demonstrating GAMLSS concepts
gamlss.mx
: for fitting finite mixtures
gamboostLSS
for GAMLSS boosting
bamlss
the Bayesian GAMLSS
gamlss2
\(^*\): the new version of GAMLSS
gamlss.ggplots
: using ggplot2
within GAMLSS
gamlss.foreach
: for parallel computing
gamlss.prepdata
: preparation of data before fitting
gamlss.lasso
: for LASSO. Ridge and elastic Net regression
gamlss.shiny
\(^*\): similar to gamlss.demo
topmodels
distributional regression help (not necessary gamlss)
gamlss()
for very large data is slow
predict
in gamlss
is not easy to use
current implementation can cope with only 4 parameters \(\mu\), \(\sigma\), \(\nu\) and \(\tau\)
to connect different estimation statistical approaches
penalised likelihood
Bayesian
boosting
to implement extra algorithms i.e. stepwise
, robust
to implement machine learning
methodology
CRAN
use
install.packages(gamlss)
GitHub
use
devtools::install_github("gamlss-dev/gamlss2")
library(gamlss2)
The Books
www.gamlss.com