the effect of a single term
into the distribution of the response;prediction
.ceteris paribus
(concentate in one term fixing the rest)
\(\textbf{x}_j\) denote a single (or maximum two terms)
\(\textbf{x}_{-j}\) all the rest so \(\{\textbf{x}_j, \textbf{x}_{-j} \}\) are all terms in the model
\(\omega(D)\) the characteristic of the distribution we are interested \({D}(y | \textbf{x}_j , \textbf{x}_{-j}; \boldsymbol{\theta})\) i.e. kurtosis
under scenario, \(\textbf{S}[g()]\) ()
\[{PE}_{\omega({D})}\left( \textbf{x}_{j} | \textbf{S} \left[ g(\textbf{x}_{-j})\right] \right)\]
fixing
values of \(\textbf{x}_{-j}\) (mean or median for continuous, level with more number of observations for factors or other possible values of importance)
average
over values of \(\textbf{x}_{-j}\)
Partial Dependence Plots
(PDF), \(\textbf{S}\left[ \text{average}(\textbf{x}_{-j})\right]\)Accumulated Local Effects
, (ALE), accumulated average local differencesMarginal Effects
(ME) average over local neighbourhoodpredictors
, \(\eta_{\theta_i}\)
parameters
, \(\theta_i\)
moment
, i.e. mean and variance
quantiles
i.e. median
distribution
gamlss.ggplots:::ale_param(madditive,c("area", "yearc"))
gamlss.ggplots:::ale_param(mneural,c("area", "yearc"))
Not implemented yet for gamlss2
objects
Note that moments not always exist for example for the BCTo
distribution
for \(\tau\le2\) the variance do not exist
for \(\tau\le1\) the mean do not exist
the purpose
should be always in our mind when we try to analyse any data
for the Munich rent data are collected almost every 10 years
guidance to judges on whether a disputed rent is a fair or not
purpose
is to identify very low or very hight rents by correcting for the explanatory variables
similar in detecting “outliers”
a possible solution: prediction z-scores
Scenarios
rent | area | yearc | location | bath | kitchen | heating |
---|---|---|---|---|---|---|
1500 | 140 | 1983 | 3 | 1 | 1 | 1 |
1000 | 55 | 1915 | 1 | 0 | 0 | 0 |
800 | 65 | 1960 | 1 | 1 | 1 | 1 |
rent <- c(1500, 1000,800)
area <- c(140, 55, 65)
yearc <- c(1983, 1915, 1960)
location <- factor(c(3,1,1))
bath <- factor(c(1,0,1))
kitchen <- factor(c(1,0,1))
cheating <- factor(c(1,0,1))
ndat <- data.frame(rent, area, yearc, location, bath, kitchen, cheating)
cat("prediction z-scores", "\n")
prediction z-scores
pp <-predict(madditive, newdata=ndat, type="parameter")
qNO(madditive$family$p(q=ndat$rent, par=pp))
[1] 0.2589106 4.7675783 2.1005927
GAMLSS
can tackle problems where the interest of the investigation lies not only in the center
but other parts of the distribution.
Personal view for the future of GAMLSS
development;
theoretical contributions
software and
knowledge exchange
theoretical contributions
software
gamlss2
books and knowledge exchange
working party | current | past |
---|---|---|
Gillian Heller |
Konstantinos Pateras |
Popi Akantziliotou |
Fernanda De Bastiani |
Paul Eilers | Vlasios Voudouris |
Thomas Kneib |
Nikos Kametas | Nicoleta Mortan |
Achim Zaileis |
Tim Cole |
Daniil Kiose |
Andreas Mayr |
Nikos Georgikopoulos |
Dea-Jin Lee |
Nicolaus Umlauf |
Luiz Nakamura |
María Xosé Rodríguez-Álvarez |
Reto Stauffer |
Nadja Klein | Majid Djennad |
Robert Rigby |
Julian Merder |
Fiona McElduff |
Mikis Stasinopoulos |
Abu Hossain | Raydonal Ospina |
The Books
www.gamlss.com