flowchart TB A[Features.] --> B(Parameters) B --> D[Properties, \n Characteristics] D --> C(Distribution) B --> C
the effect of a single term into the distribution of the response;prediction.flowchart TB A[Features.] --> B(Parameters) B --> D[Properties, \n Characteristics] D --> C(Distribution) B --> C
ceteris paribus (concentate in one term fixing the rest)
\(\textbf{x}_j\) denote a single (or maximum two terms)
\(\textbf{x}_{-j}\) all the rest so \(\{\textbf{x}_j, \textbf{x}_{-j} \}\) are all terms in the model
\(\omega(D)\) the characteristic of the distribution we are interested \({D}(y | \textbf{x}_j , \textbf{x}_{-j}; \boldsymbol{\theta})\) i.e. kurtosis
under scenario, \(\textbf{S}[g()]\) ()
\[{PE}_{\omega({D})}\left( \textbf{x}_{j} | \textbf{S} \left[ g(\textbf{x}_{-j})\right] \right)\]
fixing values of \(\textbf{x}_{-j}\) (mean or median for continuous, level with more number of observations for factors or other possible values of importance)
average over values of \(\textbf{x}_{-j}\)
Partial Dependence Plots (PDF), \(\textbf{S}\left[ \text{average}(\textbf{x}_{-j})\right]\)Accumulated Local Effects, (ALE), accumulated average local differencesMarginal Effects (ME) average over local neighbourhoodpredictors, \(\eta_{\theta_i}\)
parameters, \(\theta_i\)
moment, i.e. mean and variance
quantiles i.e. median
distribution














gamlss.ggplots:::ale_param(madditive,c("area", "yearc"))
gamlss.ggplots:::ale_param(mneural,c("area", "yearc"))

Not implemented yet for gamlss2 objects
Note that moments not always exist for example for the BCTo distribution
for \(\tau\le2\) the variance do not exist
for \(\tau\le1\) the mean do not exist
the purpose should be always in our mind when we try to analyse any data
for the Munich rent data are collected almost every 10 years
guidance to judges on whether a disputed rent is a fair or not
purpose is to identify very low or very hight rents by correcting for the explanatory variables
similar in detecting “outliers”
a possible solution: prediction z-scores
Scenarios
| rent | area | yearc | location | bath | kitchen | heating |
|---|---|---|---|---|---|---|
| 1500 | 140 | 1983 | 3 | 1 | 1 | 1 |
| 1000 | 55 | 1915 | 1 | 0 | 0 | 0 |
| 800 | 65 | 1960 | 1 | 1 | 1 | 1 |
rent <- c(1500, 1000,800)
area <- c(140, 55, 65)
yearc <- c(1983, 1915, 1960)
location <- factor(c(3,1,1))
bath <- factor(c(1,0,1))
kitchen <- factor(c(1,0,1))
cheating <- factor(c(1,0,1))
ndat <- data.frame(rent, area, yearc, location, bath, kitchen, cheating)
cat("prediction z-scores", "\n")prediction z-scores
pp <-predict(madditive, newdata=ndat, type="parameter")
qNO(madditive$family$p(q=ndat$rent, par=pp))[1] 0.2589106 4.7675783 2.1005927
GAMLSS can tackle problems where the interest of the investigation lies not only in the center but other parts of the distribution.
Personal view for the future of GAMLSS development;
theoretical contributions
software and
knowledge exchange
theoretical contributions
software
gamlss2books and knowledge exchange
| working party | current | past |
|---|---|---|
Gillian Heller |
Konstantinos Pateras |
Popi Akantziliotou |
Fernanda De Bastiani |
Paul Eilers | Vlasios Voudouris |
Thomas Kneib |
Nikos Kametas | Nicoleta Mortan |
Achim Zaileis |
Tim Cole |
Daniil Kiose |
Andreas Mayr |
Nikos Georgikopoulos |
Dea-Jin Lee |
Nicolaus Umlauf |
Luiz Nakamura |
María Xosé Rodríguez-Álvarez |
Reto Stauffer |
Nadja Klein | Majid Djennad |
Robert Rigby |
Julian Merder |
Fiona McElduff |
Mikis Stasinopoulos |
Abu Hossain | Raydonal Ospina |
The Books

www.gamlss.com