Suitable distribution for the response variable.
different types of distributions
properies of distributions
distributions in GAMLSS
a procedure to find a good initial distribution for the response
continuous
real line
;positive real line
;discrete
mixed part continuous part discrete
\(f(y;{\theta})\)
\(\int_{R_Y} f(y) \; dy=1\)
\(\sum_{y\in R_Y} f(y)=\sum_{y \in R_Y} P(Y=y)=1\)
\(\int_{R_{1}} f(y)\, dy + \sum_{y \in R_{2}} f(y) = 1\).
\(f(y;{\theta})\)
\({\theta}= (\theta_1, \theta_2, \ldots, \theta_k)\).
location
scale
shape
mean \[\begin{align*} E(Y)= \begin{cases} \int_{-\infty}^{\infty} y f(y)\, dy&\text{for continuous}\\ \sum_{y \epsilon R_Y} y\, P(Y=y) &\text{for discrete} \end{cases} \end{align*}\]
variance
coefficient of skewness
(adjusted) coefficient for kurtosis
the median
semi interquartile range
centile skewness
centile kurtosis
over 100 explicit
distributions
implicit
distributions
d
probability density functions (pdf)
p
cumulative density functions (cdf)
q
the q-function or inversed cumulative density functions (icdf)
r
random generating function
fitting function
Any distribution can be truncated
– to the left
– to the right
or
– in both
sides
A truncated family of distributions from NO has been generated
and saved under the names:
dNOtr pNOtr qNOtr rNOtr NOtr
The type of truncation is both
and the truncation parameter is 0 3
1 with absolute error < 1.1e-14
Any distribution for \(Z\) on \((-\infty, \infty)\) can be transformed to a corresponding distribution for \(Y=\exp(Z)\) on \((0, +\infty)\)
For example: from t distribution to \(\log t\) distribution
Any distribution for \(Z\) on \((-\infty, \infty)\) can be transformed to a corresponding distribution for \(Y=\exp(Z)\) on \((0, 1)\)
For example: from t
distribution to logit t
distribution
A logit family of distributions from SHASHo has been generated
and saved under the names:
dlogitSHASHo plogitSHASHo qlogitSHASHo rlogitSHASHo logitSHASHo
A 0to1 inflated logitSHASHo distribution has been generated
and saved under the names:
dlogitSHASHoInf0to1 plogitSHASHoInf0to1 qlogitSHASHoInf0to1 rlogitSHASHoInf0to1
plotlogitSHASHoInf0to1
A zero adjusted BCT distribution has been generated
and saved under the names:
dBCTZadj pBCTZadj qBCTZadj rBCTZadj
plotBCTZadj
The Books
www.gamlss.com